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Summary: The reaction of the chiral acetal 4 with furan and cyclopentadiene in the presence of a Lewis
acid gives 443 cycloadducts in very good yields. Diastercoselectivity in the case of furan is exceptionally
high, while that for the reaction with cyclopentadiene is lower. The sense of diastereoselection in the case
of furan is opposite to that which would be predicted on the basis of mechanistic models for the origin of
stereoselectivity in many reactions of chiral acetals mediated by Lewis acids. © 1999 Eisevier Science Lid.
All rights reserved.

We recently reported that the reaction of racemic 4 with furan in the presence of titanium tetrachloride was
highly diastereoselective.! A subsequent report by Hoffmann and co-workers on the use of chiral allylic cations
in 443 cycloadditions prompts us to present a more detailed account of our results in this area.?

The preparation of 4 proceeds in a straightforward fashion from either acetal 1 or commercially available
ethyl diethoxyacetate (Scheme 1). Oxidative degradation of the furan ring in 1 followed by esterification of the
resulting carboxylic acid with diazomethane afforded the ester 2 in 75% yield.3 Reaction with
trimethylsilylmethylmagnesium chloride in the presence of cerium chloride followed by a Peterson elimination
reaction gave 4 in 66% yield.4 Alternatively, the tertiary alcohol 3, readily prepared from ethyl
diethoxyace:tate,1 could be treated with 2,4-pentanediol to afford 4 in high yield via a transacetalization and
concomitant acid-mediated Peterson elimination reaction.
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Our initial reactions with 4 and furan were conducted in dichloromethane at -78 ©C using titanium
tetrachloride as the Lewis acid. Two diastereomers were produced in fair yield in a ratio of 9:1 (equation 1). We
initially believed that the origin of the diastereoselectivity in this reaction was the result of a mechanism
represented by the structure shown in Figure 1. In this picture, coordination of the Lewis acid to the oxygen
bound to the carbon possessing the axial methyl group polarizes the corresponding C-O acetal bond, weakening
it. Approach of the nucleophilic diene from the opposite face results in cycloadduct formation, either through a
stepwise or concerted mechanism, leading to Sb. This model serves well for predicting the stereochemical
outcome of many reactions of chiral acetals which proceed in the presence of Lewis acids.5 We assumed that the
reaction would be endo selective, but were not certain that this would be the case. Assigning the stereochemistry
of these cycloadducts by using NMR was not unambiguous. After several unsuccessful attempts, we were

0040-4039/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.
PII: S0040-4039(99)00080-5




1832

taa

H,TMS

O\KK foran, TiCly__ 0\/\‘/ 0\/\r

0 CH,Cls, -78‘:C
45%, 9:1

Equation 1
eventually able to prepare a derivative of the major cycloadduct which was crystalline through formation of an
ester with adamantane carboxylic acid chloride. A structural determination revealed that our mechanistic
hypothesis was incorrect. The major cycloadduct was 5a.6 Removal of the auxiliary from both cycloadducts
produced the same compound.’ Thus, they arise from attack on different faces of whatever intermediate is
produced from 4 and titanium tetrachloride.

Figure 1 Figure 2. X-ray structure of a derivative of 5a.

As shown in Figure 2, Sa possessed relative stereochemical relationships which suggested that the diene
entered from the same side as the expected Lewis acid coordination site. Such reactions are not without
precedent. For example, the DIBAL reduction of acetals derived from 2,4-pentanediol proceeds in a fashion
which has been rationalized as proceeding via coordination of the Lewis acidic aluminum to the expected oxygen,
followed by acetal opening and intramolecular delivery of hydride.8 We thought that in our case, it could be
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possible for the Lewis acid to bind to the furan and deliver it in a similar fashion. Interestingly, the reaction of
the meso-acetal 6 with furan in the presence of TiCly led to a 5.1:1 mixture of 7a and 7b in 45% yield (equation
2). The stereochemistry of the major cycloadduct 7a was established by crystallography. Again, a mechanism
based on an inversion pathway is inconsistent with this result. It appeared interesting to begin to consider that
the bidenatate Lewis acid was binding to furan and delivering the diene “intramolecularly” to produce the major
cycloadduct. Further studies of Lewis acids, however, suggested that this was not the case.

Table | shows the results of a number of cycloaddition experiments. Entry 1 shows that increasing the
amount of furan in CH»Cly results in no cycloaddition. Entries 2-5 demonstrate solvent effects. Capricious
results with dichloromethane have led us to use nitroethane with good, consistent results. Entries 6-9 show that
lowering the amount of furan used does not have a deleterious effect on the reaction. Excess furan causes
problems, presumably due to decomposition associated with reactions of furan mediated by the Lewis acid.
Entries 10-12 illustrate that cycloadducts yields decrease with decreasing concentration of the acetal. Entries 13-
15 show that the reaction is not catalytic with respect to TiCl4. The remaining entries show that other Lewis
acids are effective for the reaction as well. Interestingly, there is some variation in diastereoselectivity as a
function of Lewis acid and reaction conditions. Determining the basis for these changes will require additional



\(QZTMS

turan Lewis acid

m

O\/\l/ s,

1833

snent

o solvent, -78 ‘C
4 Sa Sb
Table 1. The Reaction of 4 with Furan.
Entry Solvent Eq. Furan [M]of 4 Lewis Acid (eq.) Yield (%)? Ratio 5a:5bd
1 CH,Ch, 10 0.2 TiClg (1.1) ob -
2 THF 10 0.2 TiCly (1.1) 0 -
3 EtOAc 10 0.2 TiCls (1.1) 0 -
4 Toluene 10 0.2 TiCly (1.1) o4 -
5 EtNO, 10 0.2 TiClg (1.1) 71 17.3:1
6 EINO, 5 0.2 TiCly (1.1) 65 15.3:1
7 EtNO; 1 0.2 TiCly (1.1) 78 15.8:1
8 EINO; 25 0.2 TiCly (1.1) 9° -
9 EtNO, 50 0.2 TiCly (1.1) st -
10 EtNO; 10 0.1 TiCly (1.1) 59 15.7:1
n EINO; 10 0.05 TiCly (1.1) 43 17.5:1
12 EINO, 10 0.01 TiCls (1.1) 168 15.4:1
13 EtINO, 10 0.2 TiCly (0.5) 26h 14.4:1
14 E(NO, 10 0.2 TiCly (0.25) 14! 25.6:1
15 EINO, 10 0.2 TiCly (0.1) 16 25.9:1
16 EINO, 10 0.2 SnCly (1.1) 59 6.6:1
17 EINO, 10 0.2 TMSOTS (1.1) 80 8.8:1
18 EINO, 10 0.2 BF3/Et0 (1.1) 77 11.2:1
19 E(NO, 10 0.2 MeAICl,(1.1) 70 4.5:1

4After chromatographic purification. b 42% recovered starting material (RSM). ©20% RSM. 985% RSM.
©25% RSM. '11% RSM. 260% RSM. "22% RSM. 137% RSM. 'Determined by HPLC.

study. However, it is important to note that regardless of the specific reaction conditions or the Lewis acid, the
major product is always the same.
In the reaction of 4 with cyclopentadiene, two cycloadducts 8a/b are produced in 73% yield in a ratio of

1.7:1 when titanium tetrachloride is used as the Lewis acid (equation 3). The stereochemical assignments in this
case are based on a comparison of the resonances for the methyl groups of both diastereomers in their respective
1H and 13C NMR spectra with those of 5a and 5b. Both 8a and 8b lead to a the same compound upon
removal of the chiral auxiliary.7 The drop in diastereoselectivity relative to furan needs to be rationalized and
experimentally addressed. Unfortunately, N-acetylpyrolle, 2,5-dimethylfuran, and isoprene have thus far failed

to give cycloadducts in anything but poor yields with 4.
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In summary, we have developed a chiral allylic acetal which reacts with furan in the presence of Lewis acid to
give 4+3 cycloadducts in good yields with good diastereoselectivities. This work serves as a basis for
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developing improved systems which react more generally with dienes and should provide part of a foundation

for further studies of chiral cations in 4+3 cycloadditions reactions.1-2: 9 Further results will be reported in due
10

course.
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